A new molecular descriptor estimates molecular complexity and defines the evolution of small molecules in medicinal chemistry
July 11, 2019 - Progress in the pharmaceutical industry depends largely on the achievements and advances in medicinal chemistry. Big pharma companies, which set the pace of the industry, can be regarded as major drivers of medicinal chemistry evolution. Since 2007 there has been a significant decline in the number of patent records involving new chemical entities, and many molecules observed during the HTS (High Throughput Screening) boom, were not considered attractive. Despite this, dominant methods and principles of organic chemistry have drastically evolved and resulted in building molecules with an increased 3D complexity.
Now, a team of researchers from the Medicinal Chemistry Department of Insilico Medicine have introduced the original descriptor MCE-18, which defines key features of "next-generation" molecules and traces the evolution of medicinal chemistry through the years.
Yan Ivanenkov, Head of Medicinal Chemistry Department at Insilico Medicine, along with Bogdan Zagribelnyy, and Vladimir Aladinskiy, both scientists in the Medicinal Chemistry Department of Insilico Medicine, reported their findings on MCE-18 in the paper, "Are We Opening the Door to a New Era of Medicinal Chemistry or Being Collapsed to a Chemical Singularity?" in the Journal of Medicinal Chemistry.
MCE-18 can be applied to assess the effectiveness of new molecules and may help researchers in designing new chemical entities that have great potential in modern drug development.
"Equipped with the newly developed MCE-18 descriptor and in silico tools, we have clearly shown that molecules and scaffolds are becoming increasingly sophisticated with higher degrees of 3D complexity for compounds against various biological targets such as kinases, GPCRs and proteases. Pharma has become more qualitative and smarter. We can reasonably regard this as a novel turning point in chemical evolution and state that medicinal chemistry has ushered in a new era of drug design and development" said Ivanenkov.
###
For further information, images or interviews, please contact:
Contact: Klug Gehilfe
ai@pharma.ai
ai@pharma.ai
Please follow the link to read the article: https:/ / pubs. acs. org/ doi/ 10. 1021/ acs. jmedchem. 9b00004
About Insilico Medicine, Inc
Insilico Medicine is an artificial intelligence company headquartered in Hong Kong, with R&D and management resources in Belgium, Russia, UK, Taiwan, and Korea sourced through hackathons and competitions. The company and its scientists are dedicated to extending human productive longevity and transforming every step of the drug discovery and drug development process through excellence in biomarker discovery, drug development, digital medicine, and aging research.
Insilico pioneered the applications of the generative adversarial networks (GANs) and reinforcement learning for the generation of novel molecular structures for diseases with a known target and with no known targets. In addition to collaborating with large pharmaceutical companies, the Insilico is pursuing internal drug discovery programs in cancer, dermatological diseases, fibrosis, Parkinson's Disease, Alzheimer's Disease, ALS, diabetes, sarcopenia, and aging. Through a partnership with LifeExtension.com, the company launched a range of nutraceutical products compounded using the advanced bioinformatics techniques and deep learning approaches. It also provides a range of consumer-facing applications including Young.AI.
In 2017, NVIDIA selected Insilico Medicine as one of the Top 5 AI companies in its potential for social impact. In 2018, the company was named one of the global top 100 AI companies by CB Insights. In 2018 it received the Frost & Sullivan Award accompanied with the industry brief. Website: http://insilico. com/
No comments:
Post a Comment